Verified and validated calculation of unsteady dynamics of viscous hydrogen–air detonations

نویسندگان

  • C. M. Romick
  • T. D. Aslam
  • J. M. Powers
چکیده

The dynamics of one-dimensional, piston-driven hydrogen–air detonations are predicted in the presence of physical mass, momentum and energy diffusion. The calculations are automatically verified by the use of an adaptive wavelet-based computational method which correlates a user-specified error tolerance to the error in the calculations. The predicted frequency of 0.97 MHz for an overdriven pulsating detonation agrees well with the 1.04 MHz frequency observed by Lehr in a shock-induced combustion experiment around a spherical projectile, thus giving a limited validation for the model. A study is performed in which the supporting piston velocity is varied, and the long time behaviour is examined for an initially stoichiometric mixture at 293.15 K and 1 atm. Several distinct propagation behaviours are predicted: a stable detonation, a high-frequency pulsating detonation, a pulsating detonation with two competing modes, a low-frequency pulsating detonation and a propagating detonation with many active frequencies. In the low-frequency pulsating mode, the long time behaviour undergoes a phenomenon similar to period-doubling. Harmonic analysis is used to examine how the frequency of the pulsations evolves as the supporting piston velocity is varied. It is found that the addition of viscosity shifts the neutral stability boundary by about 2 % with respect to the supporting piston velocity. As the supporting piston velocity is lowered, the intrinsic instability grows in strength, and the effect of viscosity is weakened such that the results are indistinguishable from the inviscid predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Unsteady Inviscid and Viscous Detonations in Hydrogen-Air

The dynamics of one-dimensional, overdriven, hydrogen-air detonations predicted in the inviscid limit as well as with the inclusion of mass, momentum, and energy diffusion were investigated. A series of shock-fitted calculations was performed in which the overdrive was varied in the inviscid limit. The 0.97 MHz frequency of oscillation predicted for a f = 1.1 overdriven detonation agrees well w...

متن کامل

On the Resolution Necessary to Capture Dynamics of Unsteady Detonation

The dynamics of one-dimensional, overdriven, hydrogen-air detonations predicted in the inviscid limit as well as with the inclusion of mass, momentum, and energy diffusion were investigated. The effect of resolution was studied for both shock-capturing and shockfitting in the inviscid limit, and it was found that shock-capturing required four times the amount of resolution of shock-fitting to p...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

On the Effect of Diffusion on Gaseous Detonation

The development and propagation of detonations is examined in the presence of diffusive processes. The difference between the inviscid and viscous models is quantitatively evaluated for one-dimensional propagating detonations. First, an investigation of viscous effects is performed on one-dimensional pulsating unsupported Chapman-Jouguet detonations using a simplified one step kinetics model fo...

متن کامل

On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame

In this work we investigate the dynamics of self-sustained detonation waves that have an embedded information boundary such that the dynamics is influenced only by a finite region adjacent to the lead shock. We introduce the boundary of such a domain, which is shown to be the separatrix of the forward characteristic lines, as a generalization of the concept of a sonic locus to unsteady detonati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015